De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities.
نویسندگان
چکیده
Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.
منابع مشابه
Metal-organic framework materials as nano photocatalyst
Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...
متن کاملMetal-organic framework materials as nano photocatalyst
Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...
متن کاملSynthesis of Nanoporous Metal Organic Framework MIL-53-Cu and Its Application for Gas Separation
MIL-53-Cu has been synthesized hydrothermally and has been used for the first time for gas separation. MIL-53-Cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for CH4, CO2 and H2 at 30 bar and 298 K. The high CH4 adsorption capacity of MIL-53-Cu maybe attributed to the high pore volume and large number of open metal sites....
متن کاملFabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors
High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...
متن کاملSynthesis and Characterization of Zn3 (BTC)2 Nanoporous Sorbent and its Application for Hydrogen Storage at Ambient Temperature
Metal organic frameworks (MOFs) are considered an interesting option for hydrogen storage. These materials show an exceptional H2 uptake. Here, Zn3(BTC)2 as MOF was synthesized with a solvothermal method. The phase stability and microstructure of the Zn3(BTC)2 was characterized in terms of their properties and structures, using a number of analytical techniques including FT-IR, XRD, SEM, BET ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature chemistry
دوره 2 11 شماره
صفحات -
تاریخ انتشار 2010